lunes, 17 de febrero de 2014

Aplicación de ecuaciones simultaneas

Este método emplea el álgebra para el cálculo de raciones, planteándose sistemas de ecuaciones lineales donde se representan mediante variables a los alimentos, cuya solución matemática representa la ración balanceada.
Ejemplo:
Se tiene Maíz grano (MG) y Torta de soya (TS) con contenidos de Proteína Cruda de 8.8% y 45% respectivamente. Se desea una mezcla que tenga un contenido de PC del 15%.
Expresados los valores por kg de dieta:
 X +     Y = 1.00 ... (1)
0.088X + 0.45Y = 0.15 ... (2)
Donde:
X = MG en la mezcla.
Y = TS en la mezcla.
La primera columna representa al Maíz y la segunda, Torta de soja. La primera ecuación (fila 1) representa la mezcla final igualada a la unidad, la misma multiplicada por 100 nos dará el 100% que es la mezcla deseada. La ecuación 2 nos indica los niveles de proteína de los insumos, y son igualados a 0.15 (15%) que es el requerido para la ración ejemplo.
Para resolver este sistema, la ecuación (1) se multiplica por -0.088 para eliminar una de las variables incógnitas:
-0.088X – 0.088Y = -0.088
0.088X + 0.450Y = 0.150
--------------------------
0.450Y – 0.088Y = 0.062
              Y = 0.1713
Reemplazando en la ecuación (1):
X + 0.1713 = 1.00
X = 0.8287
Se multiplica por 100 para volver a expresarse en porcentaje.
X = (0.8287)100 = 82.87%
Y = (0.1713)100 = 17.13%
                --------
                100.00%
La ración obtenida requiere ser comprobada en su contenido de proteína, para esto se multiplica el contenido de proteína de los insumos por su respectivo porcentaje en la ración, el total debe dar el 15% deseado:
(0.088 * 0.8287)100 = 7.29
(0.450 * 0.1713)100 = 7.71
7.29 + 7.71 = 15%
Es posible observar la exactitud del método algebraico en la formulación de raciones balanceadas, obteniéndose 82.87% de Maíz y 17.13% de Torta de soja haciendo una cantidad final de 100%, cumpliendo además el 15% de PC exigido.
Si se quiere ajustar 3 nutrientes y 1 mezcla final, se tiene que utilizar 4 alimentos y plantear un sistema de 4 ecuaciones simultáneas.
tomado de: http://mundo-pecuario.com/tema75/formulacion_raciones_para_animales/ecuaciones_simultaneas-477.html

Archivo del blog