Consideremos un pentágono regular en el cual se han dibujado las diagonales. En esta figura sólo aparecen tres ángulos diferentes. Miden 36º, 72º y 108º. La relación entre estos ángulos es la siguiente: 72 es el doble de 36 y 108 es el triple de 36. Hay varios tipos diferentes de triángulos isósceles, de los cuales seleccionamos tres: los triángulos ABE, ABF y AFG. El resto de triángulos son semejantes a alguno de estos y no aportan información adicional. Finalmente, hay cuatro segmentos diferentes en estos triángulos, que llamaremos: BE=a, AB=AE=b, AF=BF=AG=c y GF=d. Las longitudes de estos segmentos cumplen: a>b>c>d.
Consideremos cada uno de estos triángulos por separado y apliquemos el teorema del seno.
Triángulo ABE
Triángulo ABF
Triángulo AFG
Como 72º=180º-108º, se verifica que sen72º=sen108º.
En consecuencia podemos establecer las siguientes proporciones:
Es decir, una vez ordenadas las longitudes de los cuatro segmentos de mayor a menor, la razón entre cada una de ellas y la siguiente es constante e igual a nuestro número de oro.
Tomando la primera de las proporciones, teniendo en cuenta que c=a-b y haciendo b=1:
(el numero de oro)
Es decir, dos de estos segmentos consecutivos cumplen la proporción áurea.
Como consecuencia, se verifica .
TOMADO DE: http://rt000z8y.eresmas.net/El%20numero%20de%20oro.htm
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.